Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
PeerJ ; 12: e17152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666084

RESUMO

Background: Immune disorders and autoantibodies has been noted in both primary immune thrombocytopenia (ITP) and systemic lupus erythematosus (SLE). Whether the two disorders are correlated is unclear. The lack of evidence on the incidence of and risk factors for SLE in primary ITP patients poses a challenge for prediction in clinical practice. Therefore, we conducted this study. Methods: The protocol was registered with PROSPERO (CRD42023403665). Web of Science, Cochrane, PubMed, and EMBASE were searched for articles published from inception to 30 September 2023 on patients who were first diagnosed with primary ITP and subsequently developed into SLE. Furthermore, the risk factors were analyzed. Study quality was estimated using the Newcastle-Ottawa Scale. The statistical process was implemented using the R language. Results: This systematic review included eight articles. The incidence of SLE during the follow-up after ITP diagnosis was 2.7% (95% CI [1.3-4.4%]), with an incidence of 4.6% (95% CI [1.6-8.6%]) in females and 0 (95% CI [0.00-0.4%]) in males. Older age (OR = 6.31; 95% CI [1.11-34.91]), positive antinuclear antibody (ANA) (OR = 6.64; 95% CI [1.40-31.50]), hypocomplementemia (OR = 8.33; 95% CI [1.62-42.91]), chronic ITP (OR = 24.67; 95% CI [3.14-100.00]), organ bleeding (OR = 13.67; 95% CI [2.44-76.69]), and female (OR = 20.50; 95% CI [4.94-84.90]) were risk factors for subsequent SLE in ITP patients. Conclusion: Patients with primary ITP are at higher risk of SLE. Specific follow-up and prevention strategies should be tailored especially for older females with positive ANA, hypocomplementemia, or chronic ITP. In subsequent studies, we need to further investigate the risk factors and try to construct corresponding risk prediction models to develop specific prediction strategies for SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Púrpura Trombocitopênica Idiopática , Humanos , Lúpus Eritematoso Sistêmico/epidemiologia , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/imunologia , Incidência , Fatores de Risco , Púrpura Trombocitopênica Idiopática/epidemiologia , Púrpura Trombocitopênica Idiopática/sangue , Feminino , Masculino
2.
J Virol ; 98(4): e0164923, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38548704

RESUMO

Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide, responsible for approximately 20 million infections annually. Among the three open reading frames (ORFs) of the HEV genome, the ORF3 protein is involved in virus release. However, the host proteins involved in HEV release need to be clarified. In this study, a host protein, thioredoxin domain-containing protein 5 (TXNDC5), interacted with the non-palmitoylated ORF3 protein by co-immunoprecipitation analysis. We determined that the overexpression or knockdown of TXNDC5 positively regulated HEV release from the host cells. The 17FCL19 mutation of the ORF3 protein lost the ability to interact with TXNDC5. The releasing amounts of HEV with the ORF3 mutation (FCL17-19SSP) were decreased compared with wild-type HEV. The overexpression of TXNDC5 can stabilize and increase ORF3 protein amounts, but not the TXNDC5 mutant with amino acids 1-88 deletion. Meanwhile, we determined that the function of TXNDC5 on the stabilization of ORF3 protein is independent of the Trx-like domains. Knockdown of TXNDC5 could lead to the degradation of ORF3 protein by the endoplasmic reticulum (ER)-associated protein degradation-proteasome system. However, the ORF3 protein cannot be degraded in the knockout-TXNDC5 stable cells, suggesting that it may hijack other proteins for its stabilization. Subsequently, we found that the other members of protein disulfide isomerase (PDI), including PDIA1, PDIA3, PDIA4, and PDIA6, can increase ORF3 protein amounts, and PDIA3 and PDIA6 interact with ORF3 protein. Collectively, our study suggested that HEV ORF3 protein can utilize TXNDC5 for its stability in ER to facilitate viral release. IMPORTANCE: Hepatitis E virus (HEV) infection is the leading cause of acute viral hepatitis worldwide. After the synthesis and modification in the cells, the mature ORF3 protein is essential for HEV release. However, the host protein involved in this process has yet to be determined. Here, we reported a novel host protein, thioredoxin domain-containing protein 5 (TXNDC5), as a chaperone, contributing to HEV release by facilitating ORF3 protein stability in the endoplasmic reticulum through interacting with non-palmitoylated ORF3 protein. However, we also found that in the knockout-TXNDC5 stable cell lines, the HEV ORF3 protein may hijack other proteins for its stabilization. For the first time, our study demonstrated the involvement of TXNDC5 in viral particle release. These findings provide some new insights into the process of the HEV life cycle, the interaction between HEV and host factors, and a new direction for antiviral design.


Assuntos
Vírus da Hepatite E , Hepatite E , Hepatite Viral Humana , Humanos , Vírus da Hepatite E/genética , Fatores Imunológicos , Tiorredoxinas/genética , Vírion/metabolismo , Isomerases de Dissulfetos de Proteínas/genética
3.
Infect Genet Evol ; 120: 105575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403034

RESUMO

Mucormycosis is receiving much more attention because of its high morbidity and extremely high mortality rate in immunosuppressed populations. In this study, we isolated a Cunnignhamella bertholletiae Z2 strain from a skin lesion of a 14 year, 9 months old girl with acute lymphoblastic leukemia who die of infection from the Z2 strain. Genome sequencing was performed after isolation and amplification of the Z2 strain to reveal potential virulence factors and pathogenic mechanisms. The results showed that the genome size of the Z2 strain is 30.9 Mb with 9213 genes. Mucoral specific virulence factor genes found are ARF, CalN, and CoTH, while no gliotoxin biosynthesis gene cluster was found, which is a known virulence factor in Aspergillus fumigatus adapted to the environment. The Z2 strain was found to have 69 cytochrome P450 enzymes, which are potential drug resistant targets. Sensitivity testing of Z2 showed it was only inhibited by amphotericin B and posaconazole. Detailed genomic information of the C. bertholletiae Z2 strain may provide useful data for treatment.


Assuntos
Antifúngicos , Cunninghamella , Sistema Enzimático do Citocromo P-450 , Genoma Fúngico , Mucormicose , Sistema Enzimático do Citocromo P-450/genética , Mucormicose/microbiologia , Feminino , Humanos , Cunninghamella/genética , Antifúngicos/farmacologia , Adolescente , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , Filogenia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Poult Sci ; 103(4): 103501, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350386

RESUMO

Previous studies have shown that avian hepatitis E virus (HEV) decreases egg production by 10-40% in laying hens, but have not fully elucidated the mechanism of there. In this study, we evaluated the replication of avian HEV in the ovaries of laying hens and the mechanism underlying the decrease in egg production. Forty 150-days-old commercial laying hens were randomly divided into 2 groups of 20 hens each. A total of 1 mL (104GE) of avian HEV stock was inoculated intravenously into each chicken in the experimental group, with 20 chickens in the other group serving as negative controls. Five chickens from each group were necropsied weekly for histopathological examination. The pathogenicity of avian HEV has been characterized by seroconversion, viremia, fecal virus shedding, ovarian lesions, and decreased egg production. Both positive and negative-strand avian HEV RNA, and ORF2 antigens can be detected in the ovaries, suggesting that avian HEV can replicate in the ovaries and serve as an important extrahepatic replication site. The ovaries of laying hens underwent apoptosis after avian HEV infection. These results indicate that avian HEV infection and replication in ovarian tissues cause structural damage to the cells, leading to decreased egg production.


Assuntos
Vírus da Hepatite E , Hepevirus , Cistos Ovarianos , Neoplasias Ovarianas , Doenças das Aves Domésticas , Animais , Feminino , Galinhas , Cistos Ovarianos/veterinária , Neoplasias Ovarianas/veterinária , Hepevirus/genética , Apoptose
5.
J Virol ; 98(2): e0165023, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38271227

RESUMO

Vaccination is the most effective method to protect humans and animals from diseases. Anti-idiotype vaccines are safer due to their absence of pathogens. However, the commercial production of traditional anti-idiotype vaccines using monoclonal and polyclonal antibodies (mAb and pAb) is complex and has a high failure rate. The present study designed a novel, simple, low-cost strategy for developing anti-idiotype vaccines with nanobody technology. We used porcine circovirus type 2 (PCV2) as a viral model, which can result in serious economic loss in the pig industry. The neutralizing mAb-1E7 (Ab1) against PCV2 capsid protein (PCV2-Cap) was immunized in the camel. And 12 nanobodies against mAb-1E7 were screened. Among them, Nb61 (Ab2) targeted the idiotype epitope of mAb-1E7 and blocked mAb-1E7's binding to PCV2-Cap. Additionally, a high-dose Nb61 vaccination can also protect mice and pigs from PCV2 infection. Epitope mapping showed that mAb-1E7 recognized the 75NINDFL80 of PCV2-Cap and 101NYNDFLG107 of Nb61. Subsequently, the mAb-3G4 (Ab3) against Nb61 was produced and can neutralize PCV2 infection in the PK-15 cells. Structure analysis showed that the amino acids of mAb-1E7 and mAb-3G4 respective binding to PCV2-Cap and Nb61 were also similar on the amino acids sequences and spatial conformation. Collectively, our study first provided a strategy for producing nanobody-based anti-idiotype vaccines and identified that anti-idiotype nanobodies could mimic the antigen on amino acids and structures. Importantly, as more and more neutralization mAbs against different pathogens are prepared, anti-idiotype nanobody vaccines can be easily produced against the disease with our strategy, especially for dangerous pathogens.IMPORTANCEAnti-idiotype vaccines utilize idiotype-anti-idiotype network theory, eliminating the need for external antigens as vaccine candidates. Especially for dangerous pathogens, they were safer because they did not contact the live pathogenic microorganisms. However, developing anti-idiotype vaccines with traditional monoclonal and polyclonal antibodies is complex and has a high failure rate. We present a novel, universal, simple, low-cost strategy for producing anti-idiotype vaccines with nanobody technology. Using a neutralization antibody against PCV2-Cap, a nanobody (Ab2) was successfully produced and could mimic the neutralizing epitope of PCV2-Cap. The nanobody can induce protective immune responses against PCV2 infection in mice and pigs. It highlighted that the anti-idiotype vaccine using nanobody has a very good application in the future, especially for dangerous pathogens.


Assuntos
Infecções por Circoviridae , Circovirus , Anticorpos de Domínio Único , Vacinas Virais , Animais , Humanos , Camundongos , Proteínas do Capsídeo , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária , Epitopos , Suínos , Vacinas Virais/química , Vacinas Virais/imunologia
6.
ISME J ; 17(11): 2112-2122, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741957

RESUMO

High-temperature geothermal springs host simplified microbial communities; however, the activities of individual microorganisms and their roles in the carbon cycle in nature are not well understood. Here, quantitative stable isotope probing (qSIP) was used to track the assimilation of 13C-acetate and 13C-aspartate into DNA in 74 °C sediments in Gongxiaoshe Hot Spring, Tengchong, China. This revealed a community-wide preference for aspartate and a tight coupling between aspartate incorporation into DNA and the proliferation of aspartate utilizers during labeling. Both 13C incorporation into DNA and changes in the abundance of taxa during incubations indicated strong resource partitioning and a significant phylogenetic signal for aspartate incorporation. Of the active amplicon sequence variants (ASVs) identified by qSIP, most could be matched with genomes from Gongxiaoshe Hot Spring or nearby springs with an average nucleotide similarity of 99.4%. Genomes corresponding to aspartate primary utilizers were smaller, near-universally encoded polar amino acid ABC transporters, and had codon preferences indicative of faster growth rates. The most active ASVs assimilating both substrates were not abundant, suggesting an important role for the rare biosphere in the community response to organic carbon addition. The broad incorporation of aspartate into DNA over acetate by the hot spring community may reflect dynamic cycling of cell lysis products in situ or substrates delivered during monsoon rains and may reflect N limitation.


Assuntos
Fontes Termais , Fontes Termais/química , Filogenia , Aminoácidos , Ácido Aspártico , Isótopos , DNA , Acetatos
7.
Virology ; 587: 109849, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515945

RESUMO

Myosin heavy chain 9 (MYH9) has been identified as a crucial factor in gammaherpesvirus infection. Murine gammaherpesvirus 68 (MHV-68) was used as an appropriate viral model for investigating gammaherpesviruses in vivo and developing antiviral treatments. However, the roles of MYH9 in MHV-68 infection have not been documented. In the study, the relationship between the expression of MYH9 and MHV-68 infection and MYH9 as the antiviral target were analyzed. The results revealed that MYH9 was enriched on the cell surface and co-localized with MHV-68 upon viral infection. Knocking down MYH9 with siRNA or using the specific inhibitor of MYH9 activity, Blebbistatin, resulted in the decreasing of MHV-68 infection. Furthermore, polyclonal antibodies against MYH9 reduced infection by approximately 74% at a dose of 100 µg/ml. The study determined that MYH9 contributes to MHV-68 infection by interacting with viral glycoprotein 150 (gp150) in the BHK-21 cell membrane. The specific region of MYH9, amino acids 1811-1960 (C-150), was identified as the key domain involved in the interaction with MHV-68 gp150 and was found to inhibit MHV-68 infection. Moreover, C-150 was also shown to decrease HSV-1 infection in Vero cells by approximately 73%. Both C-150 and Blebbistatin were found to inhibit MHV-68 replication and reduce histopathological lesions in vivo in C57BL/6J mice. Taken together, these findings suggested that MYH9 is crucial for MHV-68 infection through its interaction with viral gp150 and that C-150 may be a promising antiviral target for inhibiting MHV-68 infection in vitro and in vivo.


Assuntos
Gammaherpesvirinae , Infecções por Herpesviridae , Rhadinovirus , Animais , Camundongos , Aminoácidos , Antivirais/metabolismo , Chlorocebus aethiops , Gammaherpesvirinae/genética , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Rhadinovirus/genética , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Microbiol Spectr ; 11(4): e0360722, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37347160

RESUMO

Hepatitis E virus (HEV) is a zoonotic pathogen that is widespread worldwide. At present, most enzyme-linked immunosorbent assay (ELISA) kits only detect antibodies against human HEV. In this study, a nanobody-horseradish peroxidase (HRP) fusion protein-based competitive ELISA (cELISA) with more convenience and spectral characteristics for HEV antibody detection was developed and used to detect HEV IgG in various species. First, 6 anti-swine HEV capsid protein nanobodies were screened using phage display technology from an immunized Bactrian camel. Then, HEV-Nb67-HRP fusions were expressed and used as a probe for developing a cELISA. The cutoff value of the cELISA was 17.8%, and there was no cross-reaction with other anti-swine virus antibodies, suggesting that the cELISA had good specificity. The intra-assay and interassay coefficients of variation (CVs) were 1.33 to 5.06% and 1.52 to 6.84%, respectively. The cELISA and Western blot showed a higher coincidence rate (97.14%, kappa value = 0.927) than cELISA and indirect ELISA (95.00%, kappa value = 0.876) in clinical swine serum samples. Finally, the seroprevalence of HEV IgG in humans, pigs, rabbits, cows, and goats was 30.67%, 19.26%, 8.75%, 27.59%, and 18.08%, respectively, suggesting that cELISA may have a broader scale for mammalian HEV antibody detection. These results suggest that the newly developed cELISA was rapid, low-cost, reliable, and useful for the serological evaluation of current HEV. IMPORTANCE HEV is thought to be a zoonotic infection and is widespread worldwide; it is beneficial to establish a more convenient and spectral method for HEV antibody detection. In this study, a convenient, time-saving, reproducible, highly sensitive, specific, and novel nanobody-based cELISA was developed and can be used to detect IgG antibodies against mammalian HEV. It provides a new technique for serological evaluation and ELISA-based diagnosis of HEV infection.


Assuntos
Vírus da Hepatite E , Feminino , Bovinos , Humanos , Suínos , Animais , Coelhos , Animais Domésticos , Estudos Soroepidemiológicos , Anticorpos Antivirais , Anticorpos Anti-Hepatite/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G , Mamíferos
10.
ISME J ; 17(7): 952-966, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37041326

RESUMO

Although the phylum Chloroflexota is ubiquitous, its biology and evolution are poorly understood due to limited cultivability. Here, we isolated two motile, thermophilic bacteria from hot spring sediments belonging to the genus Tepidiforma and class Dehalococcoidia within the phylum Chloroflexota. A combination of cryo-electron tomography, exometabolomics, and cultivation experiments using stable isotopes of carbon revealed three unusual traits: flagellar motility, a peptidoglycan-containing cell envelope, and heterotrophic activity on aromatics and plant-associated compounds. Outside of this genus, flagellar motility has not been observed in Chloroflexota, and peptidoglycan-containing cell envelopes have not been described in Dehalococcoidia. Although these traits are unusual among cultivated Chloroflexota and Dehalococcoidia, ancestral character state reconstructions showed flagellar motility and peptidoglycan-containing cell envelopes were ancestral within the Dehalococcoidia, and subsequently lost prior to a major adaptive radiation of Dehalococcoidia into marine environments. However, despite the predominantly vertical evolutionary histories of flagellar motility and peptidoglycan biosynthesis, the evolution of enzymes for degradation of aromatics and plant-associated compounds was predominantly horizontal and complex. Together, the presence of these unusual traits in Dehalococcoidia and their evolutionary histories raise new questions about the timing and selective forces driving their successful niche expansion into global oceans.


Assuntos
Chloroflexi , Peptidoglicano , Filogenia , Peptidoglicano/metabolismo , Bactérias , Fenótipo
11.
Poult Sci ; 102(1): 102326, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442305

RESUMO

Avian hepatitis E virus (avian HEV) increases poultry mortality and decreases egg production, leading to huge economic losses worldwide. However, there is no effective serological test for avian HEV. Researchers previously created a testing platform using the nanobody (Nb)-horseradish peroxidase (HRP) fusion protein as an ultrasensitive probe to develop competitive ELISA (cELISA) to detect antibodies against different animal viruses. In this study, a rapid and reliable cELISA was developed to test for antibodies against avian HEV using the same platform. Six anti-avian HEV capsid protein nanobodies were selected from an immunized Bactrian camel using phage display technology. The avian HEV-Nb49-HRP fusion protein was expressed and used as a probe for developing a cELISA assay to test for avian HEV antibodies. The cut-off value of the developed cELISA was 22.0%. There was no cross-reaction with other anti-avian virus antibodies, suggesting that the cELISA had good specificity. The coefficients of variation were 0.91% to 4.21% (intra-assay) and 1.52% to 6.35% (inter-assay). Both cELISA and indirect ELISA showed a consistency of 86.7% (kappa = 0.738) for clinical chicken serum samples, and coincidence between cELISA and Western blot was 96.0% (kappa = 0.919). The epitope recognized by Nb49 was located in aa 593-604 of the avian HEV capsid protein, and the peptide (TFPS) in aa 601-604 was essential for binding. The novel cELISA is a saving cost, rapid, useful, and reliable assay for the serological investigation of avian HEV. More importantly, the peptide TFPS may be crucial to immunodominant antigen composition and protection.


Assuntos
Hepevirus , Animais , Proteínas do Capsídeo , Peroxidase do Rábano Silvestre/metabolismo , Galinhas/metabolismo , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/veterinária , Peptídeos
12.
Front Microbiol ; 13: 1048180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504801

RESUMO

Hepatitis E virus (HEV) is thought to be a zoonotic pathogen that causes serious economic loss and threatens human health. However, there is a lack of efficient antiviral strategies. As a more promising tool for antiviral therapy, nanobodies (also named single-domain antibodies, sdAbs) exhibit higher specificity and affinity than traditional antibodies. In this study, nanobody anti-genotype four HEV open reading frame 2 (ORF2) was screened using phage display technology, and two nanobodies (nb14 and nb53) with high affinity were prokaryotically expressed. They were identified to block HEV ORF2 virus like particle (VLP) sp239 (aa 368-606) absorbing HepG2 cells in vitro. With the previously built animal model, the detection indicators of fecal shedding, viremia, seroconversion, alanine aminotransferase (ALT) levels, and liver lesions showed that nb14 could completely protect rabbits from swine HEV infection, and nb53 partially blocked swine HEV infection in rabbits. Collectively, these results revealed that nb14, with its anti-HEV neutralizing activity, may be developed as an antiviral drug for HEV.

14.
J Biol Chem ; 298(12): 102709, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36402446

RESUMO

Circulation of influenza A virus (IAV), especially within poultry and pigs, continues to threaten public health. A simple and universal detecting method is important for monitoring IAV infection in different species. Recently, nanobodies, which show advantages of easy gene editing and low cost of production, are a promising novel diagnostic tool for the monitoring and control of global IAVs. In the present study, five nanobodies against the nucleoprotein of H9N2 IAV were screened from the immunized Bactrian camel by phage display and modified with horseradish peroxidase (HRP) tags. Out of which, we determined that H9N2-NP-Nb5-HRP can crossreact with different subtypes of IAVs, and this reaction is also blocked by positive sera for antibodies against different IAV subtypes. Epitope mapping showed that the nanobody-HRP fusion recognized a conserved conformational epitope in all subtypes of IAVs. Subsequently, we developed a nanobody-based competitive ELISA (cELISA) for detecting anti-IAV antibodies in different species. The optimized amount of coating antigen and dilutions of the fusion and testing sera were 100 ng/well, 1:4000, and 1:10, respectively. The time for operating the cELISA was approximately 35 min. The cELISA showed high sensitivity, specificity, reproducibility, and stability. In addition, we found that the cELISA and hemagglutination inhibition test showed a consistency of 100% and 87.91% for clinical and challenged chicken sera, respectively. Furthermore, the agreement rates were 90.4% and 85.7% between the cELISA and commercial IEDXX ELISA kit. Collectively, our developed nanobody-HRP fusion-based cELISA is an ideal method for monitoring IAV infection in different species.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Anticorpos de Domínio Único , Animais , Humanos , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Humana/diagnóstico , Reprodutibilidade dos Testes , Suínos , Aves Domésticas
15.
Arch Microbiol ; 204(11): 676, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269423

RESUMO

A bacterial strain, Gram-positive, aerobic, rod-shaped, motile, designated YIM B00624T which was isolated from a Hamazui hot spring in Tengchong, Yunnan province, south-west China. The strain grew well on International Streptomyces Project (ISP) 2 medium and colonies were creamy yellow, flat and circular. The results of 16S rRNA gene sequence similarity analysis showed that strain YIM B00624T was closely related to the type strain of Paenibacillus filicis S4T (95.9%). The main menaquinone of strain YIM B00624T was menaquinone-7 (MK-7) and major fatty acids were anteiso-C15:0, anteiso-C17:0 and C16:0. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and four unidentified glycolipids. The DNA G+C content of strain YIM B00624T was 53.4 mol%. Based on physiological, phenotypic and chemotaxonomic data, strain YIM B00624T belongs to a novel species of the genus Paenibacillus, for which the name Paenibacillus hamazuiensis sp. nov. is proposed. The type strain is YIM B00624T (= CGMCC 1.19245T = KCTC 43365T).


Assuntos
Fontes Termais , Paenibacillus , Fontes Termais/microbiologia , RNA Ribossômico 16S/genética , Fosfatidiletanolaminas , Ácido Diaminopimélico/química , Vitamina K 2/análise , Cardiolipinas , DNA Bacteriano/genética , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana , Filogenia , Fosfolipídeos/análise , China , Análise de Sequência de DNA , Ácidos Graxos/análise , Glicolipídeos/química
16.
Syst Appl Microbiol ; 45(6): 126361, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209634

RESUMO

Biological denitrification is a significant process in nitrogen biogeochemical cycle of terrestrial geothermal environments, and Thermus species have been shown to be crucial heterotrophic denitrifier in hydrothermal system. Five Gram-stain negative, aerobic and rod-shaped thermophilic bacterial strains were isolated from hot spring sediments in Tibet, China. Phylogenetic analysis based on 16S rRNA gene and whole genome sequences indicated that these isolates should be assigned to the genus Thermus and were most closely related to Thermus caldifontis YIM 73026T, and Thermus brockianus YS38T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the five strains and the type strains of the genus Thermus were lower than the threshold values (95% and 70%, respectively) recommended for bacterial species, which clearly distinguished the five isolates from other species of the genus Thermus and indicated that they represent independent species. Colonies are circular, convex, non-transparent. Cell growth occurred at 37-80 °C (optimum, 60-65 °C), pH 6.0-8.0 (optimum, pH 7.0) and with 0-2.0% (w/v) NaCl (optimum, 0-0.5%). Denitrification genes (narG, nirK, nirS, and norB genes) detected in their genomes indicated their potential function in nitrogen metabolism. The obtained results combined with those of morphological, physiological, and chemotaxonomic characteristics, including the menaquinones, polar lipids, and cellular fatty acids showed that the isolates are proposed as representing five novel species of the genus Thermus, which are proposed as Thermus hydrothermalis sp. nov. SYSU G00291T, Thermus neutrinimicus sp. nov. SYSU G00388T, Thermus thalpophilus sp. nov. SYSU G00506T, Thermus albus sp. nov. SYSU G00608T, Thermus altitudinis sp. nov. SYSU G00630T.


Assuntos
Fontes Termais , Fontes Termais/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , Fosfolipídeos/análise , Thermus , Ácidos Graxos/análise , Bactérias/genética , Nitrogênio
17.
Virol Sin ; 37(6): 922-933, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36089216

RESUMO

African swine fever virus (ASFV) infection is a big threat to the global pig industry. Because there is no effective vaccine, rapid, low-cost, and simple diagnosis methods are necessary to detect the ASFV infection in pig herds. Nanobodies, with advantages of small molecular weight and easy genetic engineering, have been universally used as reagents for developing diagnostic kits. In this study, the recombinant ASFV-p30 was expressed and served as an antigen to immunize the Bactrian camel. Then, seven nanobodies against ASFV-p30 were screened using phage display technique. Subsequently, the seven nanobodies fused horseradish peroxidase (nanobody-HRP) were secretory expressed and one fusion protein ASFV-p30-Nb75-HRP was selected with the highest sensitivity in blocking ELISA. Using the ASFV-p30-Nb75-HRP fusion protein as a probe, a competitive ELISA (cELISA) was developed for detecting anti-ASFV antibodies in pig sera. The cut-off value of cELISA was determined to be 22.7% by testing 360 negative pig sera. The detection limit of the cELISA for positive pig sera was 1:320, and there was no cross-reaction with anti-other swine virus antibodies. The comparative assay showed that the agreement of the cELISA with a commercial ELISA kit was 100%. More importantly, the developed cELISA showed low cost and easy production as a commercial kit candidate. Collectively, a simple nanobody-based cELISA for detecting antibodies against ASFV is developed and it provides a new method for monitoring ASFV infection in the pig herds.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Anticorpos de Domínio Único , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/diagnóstico , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/métodos
18.
Front Microbiol ; 13: 956561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051768

RESUMO

Newcastle disease (ND) is an acute and highly contagious infectious disease found in poultry. Although commercial ND virus (NDV) vaccines are universally used, some case reports persistently documented vaccination failure. Therefore, novel strategies are still required to control the occurrence of the disease in chickens. Recently, nanobodies (Nbs), which have the advantages of small molecular weight and low production costs, have been shown to be promising therapeutics against viral infection. In the present study, a total of 16 Nbs against NDV nucleocapsid protein (NP) were screened from two libraries against NDV using phage display technology. Of the 16 screened Nbs, eight were prevented from binding to NDV NP protein through administering positive chicken sera for anti-NDV antibodies, indicating that the epitopes recognized by these eight Nbs were able to induce the immune response after the chickens were infected with NDV stock. Subsequently, transfection assay, construction of recombinant DF-1 cells capable of expressing different nanobodies and viral inhibition assay were used to screen the nanobodies inhibiting NDV replication. The results demonstrated that Nb18, Nb30, and Nb88 significantly inhibited the replication of Class I and different genotypes of Class II NDV strains in DF-1 cells when they were expressed in the cytoplasm. Collectively, these nanobodies provided new tools for researching the functions of NDV NP protein and may be used as a novel strategy for designing drugs against NDV infection in chickens.

19.
Front Microbiol ; 13: 865343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694306

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that causes huge losses economically to the pig industry worldwide. Previous research suggested that receptor dependence is necessary for PRRSV infection. MYH9 and CD163 are indispensable for PRRSV entry into a porcine alveolar macrophage. In the present study, human MYH9 (hMYH9) and mouse MYH9 (mMYH9), similar to swine MYH9, could also accelerate PRRSV infection in pCD163-mediated cell lines. Knockdown of MYH9 activity using the specific small interfering RNA or inhibitor (blebbistatin) concomitantly decreased PRRSV infection. C-terminal fragment of MYH9 (PRA) proteins from different mammalian species contains a conserved binding domain (aa1676-1791) for PRRSV binding, since the recombinant MYH91676-1791protein could inhibit the PRRSV infection significantly. Furthermore, the specific polyclonal antibody of MYH91676-1791 could block PRRSV infection in host cells. These data strongly supported that MYH9, a very important cofactor, participated in PRRSV entry into target cells, which may facilitate the development of a new therapeutic agent to control PRRSV infection.

20.
BMC Vet Res ; 18(1): 99, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292024

RESUMO

BACKGROUND: Hepatitis E virus (HEV) genotypes 3 and 4 are zoonotic. In this study, HEV infection in laboratory Bama miniature pigs in Sichuan Province of China was investigated. Firstly, one hundred rectal swabs were collected for HEV RNA testing, and chose positive samples for sequence analysis. Concurrently, for pathogenicity study, six healthy Bama miniature pigs were randomly divided into two groups of 3 pigs each. A total of 500 µL of HEV stock (positive fecal samples identified in this study) was inoculated intravenously into each pig in the experimental group, and the three pigs in the other group served as negative controls. Serum and fecal samples were collected at 1 to 10 weeks post-inoculation (wpi) for alanine aminotransferase (ALT) levels, anti-HEV antibodies and HEV RNA detection, respectively. During necropsies, liver lesions and HEV antigen in liver were observed at 10 wpi. RESULTS: The rate of fecal sample HEV RNA-positivity was 12% (12/100). Sequence comparisons indicated that partial ORF1 and ORF2 gene sequences of this isolate shared highest identities with corresponding sequences of genotype 4a HEV isolates (81.4%-96.1% and 89.9%-97.1%, respectively). Phylogenetic tree analysis further demonstrated that sequences of this isolate clustered together with sub-genotype 4a HEV isolate sequences. Experimentally, the pathogenicity of Bama miniature pigs infected with this isolate exhibited viremia, fecal virus shedding, seroconversion, ALT level increasing, liver lesions and HEV antigen in liver. CONCLUSIONS: This is the first study to confirm that HEV is currently circulating in laboratory Bama miniature pigs in China and this isolate can successfully infect Bama miniature pigs experimentally. More importantly, this study suggested HEV screening of laboratory pigs should be conducted to prevent research personnel from acquiring zoonotic HEV infections.


Assuntos
Vírus da Hepatite E , Hepatite E , Doenças dos Suínos , Animais , Fezes , Genótipo , Hepatite E/veterinária , Filogenia , RNA Viral , Suínos , Porco Miniatura/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...